Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Ecotoxicol Environ Saf ; 274: 116194, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38479312

ABSTRACT

Lead (Pb) is one of the most dreadful non-essential elements whose toxicity has been well reported worldwide due to its interference with the major plant functions and its overall yield. Bioremediation techniques comprising the application of beneficial microorganisms have gained attention in recent times owing to their ecofriendly nature. Addition of organic matter to soil has been reported to stimulate microbial activities. Compost application improves soil structure and binds toxic contaminants due to its larger surface area and presence of functional groups. Furthermore, it stimulates soil microbial activities by acting as C-source. So, in current study, we investigated the individual and synergistic potential of two lead (Pb)-tolerant Pseudomonas strains alongwith compost (1% w/w) in sustaining sunflower growth under Pb contaminated soil conditions. Lead chloride (PbCl2) salt was used for raising desired Pb concentration (500 mg kg-1). Results revealed that Pb stress drastically affected all the measured attributes of sunflower plant, however joint application of rhizobacteria and compost counteracted these adverse effects. Among them, co-application of str-1 and compost proved to be significantly better than str-2, as its inoculation significantly improved shoot and root lengths (64 and 76%), leaf area and leaves plant-1 (95 and 166%), 100-achene weight (200%), no. of flowers plant-1 (138%), chl 'a', 'b' and carotenoid (86, 159 and 33%) contents in sunflower as compared to control treatments. Furthermore, inoculation of Pseudomonas fluorescens along with compost increased the NPK in achene (139, 200 and 165%), flavonoid and phenolic contents (258 and 185%) along with transpiration and photosynthetic rates (54 and 72%) in leaves as compared to control treatment under Pb contamination. In addition, Pb entry to roots, shoots and achene were significantly suppressed under by 87, 90 and 91% respectively due to integrated application of compost and str-1 as evident by maximum Pb-immobilization efficiency (97%) obtained in this treatment. Similarly, bioconcentration factors for roots, shoots and achene were found to be 0.58, 0.18 and 0.0055 with associated translocation factor (0.30), which also revealed phytostabilization of Pb under combined application of PGPR and compost. Since, phytoremediation of heavy metals under current scenario of increasing global population is inevitable, results of the current study concluded that tolerant PGPR species along with organic amendments such as compost can inhibit Pb uptake by sunflower and confer Pb tolerance via improved nutrient uptake, physiology, antioxidative defense and gas exchange.


Subject(s)
Composting , Helianthus , Soil Pollutants , Antioxidants/metabolism , Helianthus/metabolism , Pseudomonas/metabolism , Lead/toxicity , Lead/metabolism , Biodegradation, Environmental , Plant Roots/metabolism , Soil/chemistry , Nutrients , Soil Pollutants/analysis
2.
J Microbiol ; 61(11): 993-1011, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38048022

ABSTRACT

Listeria monocytogenes is an important food-borne pathogen that causes listeriosis and has a high case fatality rate despite its low incidence. Medicinal plants and their secondary metabolites have been identified as potential antibacterial substances, serving as replacements for synthetic chemical compounds. The present studies emphasize two significant medicinal plants, Allium cepa and Zingiber officinale, and their efficacy against L. monocytogenes. Firstly, a bacterial isolate was obtained from milk and identified through morphology and biochemical reactions. The species of the isolate were further confirmed through 16S rRNA analysis. Furthermore, polar solvents such as methanol and ethanol were used for the extraction of secondary metabolites from A. cepa and Z. officinale. Crude phytochemical components were identified using phytochemical tests, FTIR, and GC-MS. Moreover, the antibacterial activity of the crude extract and its various concentrations were tested against L. monocytogenes. Among all, A. cepa in methanolic extracts showed significant inhibitory activity. Since, the A. cepa for methanolic crude extract was used to perform autography to assess its bactericidal activity. Subsequently, molecular docking was performed to determine the specific compound inhibition. The docking results revealed that four compounds displayed strong binding affinity with the virulence factor Listeriolysin-O of L. monocytogenes. Based on the above results, it can be concluded that the medicinal plant A. cepa has potential antibacterial effects against L. monocytogenes, particularly targeting its virulence.


Subject(s)
Anti-Infective Agents , Listeria monocytogenes , Plants, Medicinal , Animals , Onions , Milk/microbiology , RNA, Ribosomal, 16S/genetics , Molecular Docking Simulation , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Phytochemicals/pharmacology
3.
Front Genet ; 14: 1230998, 2023.
Article in English | MEDLINE | ID: mdl-37900178

ABSTRACT

Objective: Estrogen receptor breast cancer (BC) is characterized by the expression of estrogen receptors. It is the most common cancer among women, with an incidence rate of 2.26 million cases worldwide. The aim of this study was to identify differentially expressed genes and isoform switching between estrogen receptor positive and triple negative BC samples. Methods: The data were collected from ArrayExpress, followed by preprocessing and subsequent mapping from HISAT2. Read quantification was performed by StringTie, and then R package ballgown was used to perform differential expression analysis. Functional enrichment analysis was conducted using Enrichr, and then immune genes were shortlisted based on the ScType marker database. Isoform switch analysis was also performed using the IsoformSwitchAnalyzeR package. Results: A total of 9,771 differentially expressed genes were identified, of which 86 were upregulated and 117 were downregulated. Six genes were identified as mainly associated with estrogen receptor positive BC, while a novel set of ten genes were found which have not previously been reported in estrogen receptor positive BC. Furthermore, alternative splicing and subsequent isoform usage in the immune system related genes were determined. Conclusion: This study identified the differential usage of isoforms in the immune system related genes in cancer cells that suggest immunosuppression due to the dysregulation of CXCR chemokine receptor binding, iron ion binding, and cytokine activity.

4.
Toxics ; 11(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37505527

ABSTRACT

Metallic nanoparticles have received a significant amount of reflection over a period of time, attributed to their electronic, specific surface area, and surface atom properties. The biogenic synthesis of iron oxide nanoparticles (FeONPs) is demonstrated in this study. The green synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. Leptolyngbya sp. L-2 extract was employed as a reducing agent, and iron chloride hexahydrate (FeCl3·6H2O) was used as a substrate for the biogenic synthesis of FeONPs. Different spectral methods were used for the characterization of the biosynthesized FeONPs, ultraviolet-visible (UV-Vis) spectroscopy gave a surface plasmon resonance (SPR) peak of FeONPs at 300 nm; Fourier transform infrared (FTIR) spectral analysis was conducted to identify the functional groups responsible for both the stability and synthesis of FeONPs. The morphology of the FeONPs was investigated using scanning electron microscopy (SEM), which shows a nearly spherical shape, and an X-ray diffraction (XRD) study demonstrated their crystalline nature with a calculated crystallinity size of 23 nm. The zeta potential (ZP) and dynamic light scattering (DLS) measurements of FeONPs revealed values of -8.50 mV, suggesting appropriate physical stability. Comprehensive in-vitro pharmacogenetic properties revealed that FeONPs have significant therapeutic potential. FeONPs have been reported to have potential antibacterial and antifungal properties. Dose-dependent cytotoxic activity was shown against Leishmania tropica promastigotes (IC50: 10.73 µg/mL) and amastigotes (IC50: 16.98 µg/mL) using various concentrations of FeONPs. The cytotoxic potential was also investigated using brine shrimps, and their IC50 value was determined to be 34.19 µg/mL. FeONPs showed significant antioxidant results (DPPH: 54.7%, TRP: 49.2%, TAC: 44.5%), protein kinase (IC50: 96.23 µg/mL), and alpha amylase (IC50: 3745 µg/mL). The biosafety of FeONPs was validated by biocompatibility tests using macrophages (IC50: 918.1 µg/mL) and red blood cells (IC50: 2921 µg/mL). In conclusion, biogenic FeONPs have shown potential biomedical properties and should be the focus of more studies to increase their nano-pharmacological significance for biological applications.

5.
Micromachines (Basel) ; 14(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37241552

ABSTRACT

The biosynthesis of algal-based zinc oxide (ZnO) nanoparticles has shown several advantages over traditional physico-chemical methods, such as lower cost, less toxicity, and greater sustainability. In the current study, bioactive molecules present in Spirogyra hyalina extract were exploited for the biofabrication and capping of ZnO NPs, using zinc acetate dihydrate and zinc nitrate hexahydrate as precursors. The newly biosynthesized ZnO NPs were characterized for structural and optical changes through UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). A color change in the reaction mixture from light yellow to white indicated the successful biofabrication of ZnO NPs. The UV-Vis absorption spectrum peaks at 358 nm (from zinc acetate) and 363 nm (from zinc nitrate) of ZnO NPs confirmed that optical changes were caused by a blue shift near the band edges. The extremely crystalline and hexagonal Wurtzite structure of ZnO NPs was confirmed by XRD. The involvement of bioactive metabolites from algae in the bioreduction and capping of NPs was demonstrated by FTIR investigation. The SEM results revealed spherical-shaped ZnO NPs. In addition to this, the antibacterial and antioxidant activity of the ZnO NPs was investigated. ZnO NPs showed remarkable antibacterial efficacy against both Gram-positive and Gram-negative bacteria. The DPPH test revealed the strong antioxidant activity of ZnO NPs.

6.
Environ Sci Pollut Res Int ; 30(31): 77499-77516, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37256400

ABSTRACT

Bacillus species have been reported to reduce the negative effects of salt stress on plants; the involvement of Bacillus anthracis PM21 and the internal mechanisms involved in this process are unclear. The effects of PM21 inoculation on maize plants under salt stress were investigated in this study. The study aimed to assess the ability of Bacillus anthracis PM21 to endure high levels of salinity stress while preserving the concentration of plant growth regulators. The biomass, photosynthetic pigments, relative water content (RWC), antioxidants, osmoprotectants, inorganic ion contents, regulation of plant hormones and expression of antioxidants enzyme encoded genes were investigated under normal and salinity stress conditions. Bacillus anthracis PM21 produced a significant amount of 1-aminocyclopropane-1-carboxylate deaminase enzyme (ACC deaminase) and exopolysaccharides (EPS) under salt stress and normal conditions. PM21 also produced plant growth stimulants including indole acetic acid, gibberellic acid (GA3), kinetin, and siderophore under salinity stress and normal conditions. Under salt stress, PM21 inoculation markedly increased plant growth indices, stimulate antioxidant enzyme mechanisms, osmoprotectants, and chlorophyll content. The use of qRT-PCR to analyze the transcription of targeted genes indicated greater expression of antioxidant-encoded genes and inferred their possible function in salinity stress tolerance. Our findings shed light on the functions of PM21 and its regulatory mechanisms in plant salt stress tolerance, as well as the importance of PM21 in this process. This study will provide a thorough analysis of the theoretical framework for adopting PM21 in agricultural production as an eco-friendly method to enhance crop growth and yield under salinity stress.


Subject(s)
Antioxidants , Bacillus anthracis , Antioxidants/metabolism , Bacillus anthracis/metabolism , Zea mays/metabolism , Salt Stress , Salt Tolerance , Plant Growth Regulators/metabolism
7.
Foods ; 12(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37107503

ABSTRACT

Mushrooms play a crucial role in human life as well as in nature, providing food, medicine, and carrying out vital processes of decomposition, nutrient recycling, and developing mycorrhizal association with plants. The traditional system of knowledge about identification, collection, and usage of mushrooms has been accumulated through the shared experiences of many generations. Unfortunately, there have been continuous threats to the folk knowledge of mushrooms mainly due to habitat degradation, urbanization, and contemporary medication. The current research was, therefore, aimed to document an ethnomycological knowledge possessed by the ethnic communities of Swat, Pakistan. The purposive randomized sampling was carried out using chain referral method. Ethno-mycological information was collected from 62 informants using free listing, preference ranking, and use totaled methods. In total, 34 species of mushrooms belonging to 31 genera and 21 families were reported. About 85% of the reported species belong to Basidiomycetes, and 12.5% to Ascomycetes are used as food and for medicinal purposes. Morchella angusticeps, M. esculenta, Pleurotus sp., Auricularia sp., Flammulina velutipes, Agaricus bisporus, Ganoderma lucidum, and Sanghuangporus sanghuang were among the most cited edible and medicinal mushrooms. The current study revealed that district Swat is rich in wild edible and medicinal mushrooms (WEMs), and the local communities possess rich traditional knowledge about their collection, storage, and utilization. The diversity of WEMs of this region could contribute substantially to the socio-economic uplifting of the local communities through appropriate domestication and commercialization. Anthropogenic factors, coupled with depletion of traditional knowledge, threaten the diversity of WEMs in the region; therefore, in situ and ex situ conservation strategies are highly recommended.

8.
Bioprocess Biosyst Eng ; 46(3): 381-391, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35779113

ABSTRACT

An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.


Subject(s)
Environmental Pollutants , Extremophiles , Bacillus cereus , Wastewater , Lipopeptides/chemistry , Surface-Active Agents/chemistry , Spectroscopy, Fourier Transform Infrared
9.
Article in English | MEDLINE | ID: mdl-35966728

ABSTRACT

Background: Since the beginning of civilization, medicinal plants have been used in human healthcare systems. Studies have been conducted worldwide to evaluate their efficacy, and some of the results have triggered the development of plant-based medications. Rural women in Pakistan frequently experience gynaecological disorders due to malnutrition and heavy physical work during pregnancy. Due to the low economic status, the remoteness of the area, and the lack of modern health services, herbal therapy for gynaecological disorders is common among the indigenous tribes of the study area. Methods: Field surveys were carried out from April 2018 to October 2020 to collect data regarding medicinal plants used for different gynaecological disorders. A semistructured questionnaire was used to collect ethnogynaecological data. Results: In total, 67 medicinal plant species belonging to 38 families are being used to treat 26 different gynaecological problems. The herbaceous growth form and the Lamiaceae family were recorded with the maximum number of plant species (42 species and 7 species, respectively). Leaves are the most highly utilized plant part, with 16 species. In the case preparation method, decoction was the dominant method (25 species, 36.76%). The informants reported the maximum number of species for the treatment of irregular menstrual flow as 11 species (15.28%). The highest relative frequency of citation (RFC) value was obtained for Acacia modesta (0.37), and the use value (UV) for Tecomella undulata (0.85). The highest informants' consensus factor (ICF) value (1.0) was obtained for emmenagogue and tonic each after delivery. The highest consensus index (CI%) value was calculated for Acacia modesta (36.92%). The Lamiaceae had the highest family importance value (FIV) (98.46%). Conclusion: This is the first ever quantitative study focusing mainly on ethnogynaecological study conducted in the tribal areas of North Waziristan which highlights the importance of traditional herbal remedies for their basic medical requirements. The results of this study would serve as a baseline for advanced phytochemical and pharmacological screening, as well as conservationists for further studies.

10.
Plants (Basel) ; 11(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35684289

ABSTRACT

Salinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (δ13C) and nitrogen isotope composition (δ15N), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m-1). The number of spikes m-2 was highest in Alanda01 (620.8) while the lowest (556.2) was exhibited by Barjouj. Alanda01 produced the highest grain yield (3.96 t ha-1), while the lowest yield was obtained in 59/3A (2.31 t ha-1). Genotypes 113/1B, Barjouj, and Alanda01 demonstrate the highest negative δ13C values (-27.10‱, -26.49‱, -26.45‱), while the lowest values were obtained in N1-29 (-21.63‱) under salt stress. The δ15N was increased (4.93‱ and 4.59‱) after 7 and 14 dS m-1 as compared to control (3.12‱). The iWUE was higher in N1-29 (144.5) and N1-10 (131.8), while lowest in Barjouj (81.4). Grain protein contents were higher in 113/1B and Barjouj than other genotypes. We concluded that salt tolerant barley genotypes can be cultivated in saline marginal soils for food and nutrition security and can help in the rehabilitation of marginal lands.

11.
Dose Response ; 20(1): 15593258211069707, 2022.
Article in English | MEDLINE | ID: mdl-35145353

ABSTRACT

Type 2 diabetes mellitus (T2D) has been reported as major public health issue rising at an alarming rate worldwide, and obesity is the leading risk factor for the development of T2D. Secreted frizzled-related protein 4 (SFRP4) released with inflammatory mediators from adipose tissues constrains the exocytosis of insulin containing granules from the pancreatic islets that leads towards the development to T2D. The significant overexpression of SFRP4 in diabetic patients and its involvement in islet dysfunction suggest its critical role in the development of diabetes. Thus, this study was designed to explore the potential of ascorbic acid (AA) and gallic acid (GA) against SFRP4 for the treatment of diabetes. Molecular docking approach was used for the prediction of binding interactions of AA and GA at the active pocket of SFRP4. Docking analysis indicated strong binding interactions of AA and GA to the amino acid residues at the active site of SFRP4. A significant reduction in the level of SFRP4 was observed in transfected cells treated with AA and GA. For the evaluation of the cytotoxicity of AA and GA against HepG2 cells, MTT assay was performed. The results of MTT assay demonstrated that AA and GA are non-cytotoxic towards HepG2 cells at concentration of 15 µM. The oral administration of AA and GA to diet-induced obese mice caused significant reduction in body weight, blood glucose level, and SFRP4 expression. The results of this study suggest that AA and GA have potential for the treatment of obesity-induced T2D.

12.
J Infect Public Health ; 15(4): 491-497, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34688575

ABSTRACT

BACKGROUND: Lichens were used as an ailment in the traditional medicine for treating various disorders for centuries. Since there is less evidence in the literature about the medicinal property of Parmelia sulcata (P. sulcata), we made a pioneer attempt to explore the antioxidant and antimicrobial properties of lichens. METHODS: In the present study, the three Samples were collected by using the column chromatography by elucidating the ethyl acetate extract of P. sulcata, and the samples were subjected to DPPH and ABTS assays to find the free radical scavenging activity, total phenols and flavonoids were estimated. The minimum inhibitory concentration was evaluated against the bacterial species (Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) and fungal species (Candida albicans and Aspergillus fumigatus) by the microdilution method. The best activity sample was analyzed using the Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transmission Infrared Spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR). RESULTS: The results shown that all the samples contain phenols and flavonoids which are responsible for antioxidants, antibacterial and antifungal activities. Among that sample-3 shown best antimicrobial activity and it was analyzed and identified as 7-hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-one. CONCLUSION: The outcome of the study suggests that sample-3 shown good antimicrobial activity and identified as 7-hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-one. It can be a resource for further studies.


Subject(s)
Anti-Infective Agents , Lichens , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Flavonoids/pharmacology , Humans , Lichens/chemistry , Microbial Sensitivity Tests , Parmeliaceae , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectroscopy, Fourier Transform Infrared
13.
Environ Res ; 203: 111880, 2022 01.
Article in English | MEDLINE | ID: mdl-34400161

ABSTRACT

The present research work focuses on preparing 3D transition metal doped copper oxide nanostructures through sonication method and to investigate the effect of doping different transition metal into copper oxide (CuO) on the basic properties of CuO nanoparticles and, to study the photocatalytic behaviour of the doped CuO samples. The morphological studies performed with the help of SEM revealed the formation of flower like CuO 3D nanostructures for all the doped samples. The slight shift in the position of peaks in the x-ray diffraction (XRD) pattern confirms that doping has been successfully done into CuO. Also, the sharp diffraction peaks suggest the polycrystalline nature of the sample with monoclinic structure. The UV-vis absorption analysis reveals a bandgap of 2.26, 2.12 and 2.15 eV for the CuO samples doped with nickel, zinc, and iron respectively via Tauc plot. The photocatalytic performance of the samples tested through the degradation of methylene blue (MB) dye suggests that samples doped with Zn shows better degradation. Thus, it is evident that the morphology and the optical properties of the CuO can be tailored by doping transition metal into it.


Subject(s)
Nanoparticles , Nanostructures , Catalysis , Copper , Light , Methylene Blue
14.
Environ Sci Pollut Res Int ; 29(11): 15654-15663, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34636011

ABSTRACT

Aegle marmelos (L.) Correa belongs to the family Rutaceae is generally known as "bael fruit tree" occuring across the south Asian countries. The current investigation screened the main derivatives from crude ethanolic extracts of the Bael tree leaf and evaluated activity effects on the larvae and adults of Aedes aegypti (L.) Dengue vector mosquito and a non-target aquatic predator. The GC-MS results showed that the peak area was found to be profound in N-methyl-1-adamantaneacetamide (N-M 1a) followed by oleic acid (OA) with 63.08 and 11.43% respectively. The larvicidal activity against the fourth instar larvae and the crude Ex-Am showed prominent mortality rate (93.60%) at the maximum dosage of 100 ppm. The mortality rate of N-M 1a and OA was occurred at 10 ppm (97.73%) and 12 ppm (95.4%). The repellent activity was found to be prominent at crude Ex-Am (50 ppm) as compared to the pure compounds (N-m 1a and OA) with maximum protection time up to 210 min. The non-target screening of Ex-Am, N-M 1a, and OA on mosquito predator Tx. splendens showed that they are scarcely toxic even at the maximum dosage of 1000 ppm (34.13%), 100 ppm (27.3%), and 120 ppm (31.3%) respectively. Thus, the present investigation clearly proved that the crude Ex-Am and their major derivatives Nm 1-a and OA showed their acute larval toxicity as well as potential mosquito repellent against the dengue mosquito and eco-safety against the mosquito predator.


Subject(s)
Aedes , Aegle , Dengue , Insect Repellents , Insecticides , Amantadine , Animals , Containment of Biohazards , Ethanol , Larva , Mosquito Vectors , Oleic Acid , Plant Extracts , Plant Leaves , Trees
15.
Environ Res ; 204(Pt B): 112136, 2022 03.
Article in English | MEDLINE | ID: mdl-34592251

ABSTRACT

Azo dyes, known for its toxicity and mutagenicity, are used by textile industries. Bioremediation serves the best alternative treatment process due to its eco-friendly nature and cost-effectiveness. Degradation using individual bacteria promotes azo dye removal, while the degradation is enhanced using the immobilization method. Bio-carrier promotes the attachment of the bacterial strains and increases azo dye degradation. The present study focuses on the biodegradation of Reactive Red (RR), Reactive Brown (RB), Reactive Black dye (RBL), and mixed dyes in a soil slurry bioreactor containing free cells, co-culture, and immobilized cells. The physico-chemical analysis and soil characteristics were determined. The free cells of Bacillus cereus showed degradation of azo dyes - 79.42 ± 0.03% RR, 78.78 ± 0.02% RBL; 70.76 ± 0.03% RB, and 84.89 ± 0.05% of mixed dyes respectively. Enterobacter cloacae free cells resulted in degradation of 72.87 ± 0.01% RR, 75.21 ± 0.01% RBL, 74.50 ± 0.02% RB, and 73.39 ± 0.04% mixed dyes respectively. Co-cultured bacterial strains resulted in 77.18 ± 0.03% RR, 80.27 ± 0.02% RBL, 76.97 ± 0.02% RB and 86.29 ± 0.05% mixed dyes respectively. The immobilization of Bacillus cereus and Enterobacter cloacae on 2% corn starch resulted in 98.4 ± 0.01% degradation of RR, 89.8 ± 0.09% degradation of RB, 99.4 ± 0.05% of RBL, and 98.1 ± 0.08% of mixed reactive dyes respectively.


Subject(s)
Azo Compounds , Bacillus subtilis , Azo Compounds/toxicity , Biodegradation, Environmental , Cells, Cultured , Coculture Techniques , Enterobacter cloacae , Soil
16.
J Infect Public Health ; 14(12): 1893-1902, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34782288

ABSTRACT

BACKGROUND: In this work biologically active CuO nanoparticle were discussed. The literature suggests that CuO shows very good antibacterial activity on both Gram positive and Gram-negative bacterial strains. Further, it is used in antibacterial coatings on various substrates to prevent various kinds of medical equipment's. Here CuO NPs was prepared via greener approach and almond gum is used as a reducing agent. Almond gum is nontoxic and contains huge amount of polysaccharides. Hence, the gum mediated CuO NPs can be used to treat urinary tract infection (UTI). METHOD: The CuO NPs were characterized using UV, FTIR, XRD and HESEM with EDX analysis. The antibacterial (both Gram positive and Gram negative) effects of CuO NPs were determined with agar well diffusion method. RESULTS: The CuO NPs were characterized by X-ray diffraction pattern result indicates that the monoclinic structure with average crystallite size about 12.91 nm. Straight line model in Scherrer method results found to be crystallite size. The crystallite size and microstrain were estimated in W-H analysis. Lorentz polarization factor, size-strain plot (SSP), morphological index (M-I) and dislocation density were calculated based on x-ray diffraction data. The FTIR analysis confirms presence of Cu and O band. From the absorption spectrum of CuO NPs, it was found to be cutoff wavelength of 230 nm and direct bandgap was found to be 4.97 eV. Morphology analysis shows that the synthesized of CuO NPs reveals agglomerated and spherical in shape. It was found to be 16 nm-25 nm. Energy dispersive spectroscopy (EDX) result indicates percentages of Cu and O element present in the sample. Antimicrobial studies reveal zone of inhibition of CuO NPs. This was used in different pathogens such as gram-positive and Gram-negative bacteria. This study shows exhibit excellent antimicrobial effects of CuO NPs. CONCLUSION: Hence, in this article the novel and cost-effective method to prepare CuO NPs was discussed. The prepared CuO NPs can be used as an antifungal and antibacterial reagent.


Subject(s)
Anti-Infective Agents , Communicable Diseases , Metal Nanoparticles , Nanoparticles , Anti-Bacterial Agents/pharmacology , Copper , Drug Resistance, Bacterial , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Microbial Sensitivity Tests
17.
J Infect Public Health ; 14(12): 1887-1892, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34711526

ABSTRACT

BACKGROUND: The unrestricted application of antibiotics increased antimicrobial resistance in bacteria through horizontal gene transfer of resistant genes from the pathogenic sources and the evolution of multi-drug resistance organisms. The application of antibiotics caused severe risk to human health because animals may transmit diseases to humans. Hence, the search of novel antimicrobial agents from microbial sources is an urgent need. METHODS: A lipopeptide producing stain SU05 was isolated from the pond water by serial dilution method. The lipopeptide yield was improved after optimization method and the yield was analyzed using High Performance Liquid chromatography. The influence of wheat bran (0.5%-2.5%) and rice bran (0.5%-2.5%), pH (5.5-8.5), temperature (25-40 °C) were screened to improve the production of lipopeptides by stain SU05 in submerged fermentation. Antibacterial activity of crude lipopeptide was tested against Vibrio anguillarum, Vibrio harveyi, Vibrio vulnificus, Vibrio salmonicida, Vibrio septicus, Vibrio fischeri, and Vibrio splendidus. The influence of lipopeptide on enzymes and antimicrobial property was analyzed. RESULTS: Lipopeptide production was improved after nutrient supplements and optimization of physical factors. Lipopeptide showed potent activity against multi-drug resistant bacterial strains such as, V. anguillarum, V. harveyi, V. vulnificus, V. salmonicida, V. septicus, V. fischeri, and V. splendidus. Lipopeptide shows stability on various enzymes and this clearly revealed that the purified lipopeptide was highly stable in the presence of proteolytic enzymes. The findings suggest that lipopeptide SU05 characterized from the bacteria can survive at acidic environment in the intestine, and could be used to formulate fish feed. CONCLUSIONS: The finding showed that the characterized lipopepties synthesized by B. amyloliquefaciens SU05 had a broad spectrum antibiotic potential against multidrug resistant Vibriosis causing bacterial pathogens. They were highly stable at broad temperature and pH ranges. These results demonstrated stability of lipopeptide at extreme conditions. The stability and activity of lipopeptide at extreme climatic condition is also useful for the application in pharmaceutical and food processing industries.


Subject(s)
Anti-Infective Agents , Pharmaceutical Preparations , Vibrio , Animals , Humans , Lipopeptides/pharmacology , Microbial Sensitivity Tests
18.
Mar Pollut Bull ; 172: 112880, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34428625

ABSTRACT

The Baram River is one of the largest rivers in Sarawak, where many large industries, such as plywood, sawmills, shipyards, interisland ports, and other wood-based industries are located along the river. Microplastic contamination has become a widespread and growing concern worldwide because of the small sizes of microplastics and their presence in seafood such as fish, squid, scallop, crabs, shrimp, and mussels. In this study, microplastics were found in all sampling stations. Out of the 4017 microplastics found in the water and sediment, microplastics fragment accounted for 67.8% of total microplastics, followed by fiber, film, pellet, and foam. Five microplastic polymer types were detected by ATR-FTIR, including polyethylene (PE), polyester (PET) fibers, silicon polymer, nitrile, and polystyrene (PS). The most common microplastics size range in Baram River was 0.3-1 mm, with blue as the highly abundant color.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Borneo , Environmental Monitoring , Estuaries , Plastics , Rivers , Water , Water Pollutants, Chemical/analysis
19.
Biology (Basel) ; 10(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34356536

ABSTRACT

The strong association between POPs and breast cancer in humans has been suggested in various epidemiological studies. However, the interaction of POPs with the ERα protein of breast cancer, and identification of natural and synthetic compounds to inhibit this interaction, is mysterious yet. Consequently, the present study aimed to explore the interaction between POPs and ERα using the molecular operating environment (MOE) tool and to identify natural and synthetic compounds to inhibit this association through a cluster-based approach. To validate whether our approach could distinguish between active and inactive compounds, a virtual screen (VS) was performed using actives (627 compounds) as positive control and decoys (20,818 compounds) as a negative dataset obtained from DUD-E. Comparatively, short-chain chlorinated paraffins (SCCPs), hexabromocyclododecane (HBCD), and perfluorooctanesulfonyl fluoride (PFOSF) depicted strong interactions with the ERα protein based on the lowest-scoring values of -31.946, -18.916, -17.581 kcal/mol, respectively. Out of 7856 retrieved natural and synthetic compounds, sixty were selected on modularity bases and subsequently docked with ERα. Based on the lowest-scoring values, ZINC08441573, ZINC00664754, ZINC00702695, ZINC00627464, and ZINC08440501 (synthetic compounds), and capsaicin, flavopiridol tectorgenin, and ellagic acid (natural compounds) showed incredible interactions with the active sites of ERα, even more convening and resilient than standard breast cancer drugs Tamoxifen, Arimidex and Letrozole. Our findings confirm the role of POPs in breast cancer progression and suggest that natural and synthetic compounds with high binding affinity could be more efficient and appropriate candidates to treat breast cancer after validation through in vitro and in vivo studies.

20.
Plants (Basel) ; 10(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209682

ABSTRACT

BACKGROUND: Trees are good sources of bioactive compounds as antifungal and antioxidant activities. METHODS: Management of six molecularly identified Fusarium oxysporum isolates (F. oxy 1, F. oxy 2, F. oxy 3, F. oxy 4, F. oxy 5 and F. oxy 6, under the accession numbers MW854648, MW854649, MW854650, MW854651, and MW854652, respectively) was assayed using four extracts from Conium maculatum leaves, Acacia saligna bark, Schinus terebinthifolius wood and Ficus eriobotryoides leaves. All the extracts were analyzed using HPLC-VWD for phenolic and flavonoid compounds and the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ß-carotene-linoleic acid (BCB) bleaching assays. RESULTS: In mg/kg extract, the highest amounts of polyphenolic compounds p-hydroxy benzoic, benzoic, gallic, and rosmarinic acids, with 444.37, 342.16, 311.32 and 117.87, respectively, were observed in C. maculatum leaf extract; gallic and benzoic acids with 2551.02, 1580.32, respectively, in A. saligna bark extract; quinol, naringenin, rutin, catechol, and benzoic acid with 2530.22, 1224.904, 798.29, 732.28, and 697.73, respectively, in S. terebinthifolius wood extract; and rutin, o-coumaric acid, p-hydroxy benzoic acid, resveratrol, and rosmarinic acid with 9168.03, 2016.93, 1009.20, 1156.99, and 574.907, respectively, in F. eriobotryoides leaf extract. At the extract concentration of 1250 mg/L, the antifungal activity against the growth of F. oxysporum strains showed that A. saligna bark followed by C. maculatum leaf extracts had the highest inhibition percentage of fungal growth (IPFG%) against F. oxy 1 with 80% and 79.5%, F. oxy 2 with 86.44% and 78.9%, F. oxy 3 with 86.4% and 84.2%, F. oxy 4 with 84.2, and 82.1%, F. oxy 5 with 88.4% and 86.9%, and F. oxy 6 with 88.9, and 87.1%, respectively. For the antioxidant activity, ethanolic extract from C. maculatum leaves showed the lowest concentration that inhibited 50% of DPPH free radical (3.4 µg/mL). Additionally, the same extract observed the lowest concentration (4.5 µg/mL) that inhibited BCB bleaching. CONCLUSIONS: Extracts from A. saligna bark and C. maculatum leaves are considered potential candidates against the growth of F. oxysporum isolates-a wilt pathogen-and C. maculatum leaf as a potent antioxidant agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...